247 research outputs found

    Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Full text link
    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000 - 20000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates.Comment: Accepted for A&A. Data will be made available at CDS. Is available here: https://github.com/barklem/public-data. Replaced version corrects url and adds it to the pape

    Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron

    Full text link
    Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000 - 20000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant.Comment: Accepted by A&

    The broadening of Fe II lines by neutral hydrogen collisions

    Full text link
    Data for the broadening of 24188 Fe II lines by collisions with neutral hydrogen atoms have been computed using the theory of Anstee & O'Mara as extended to singly ionised species and higher orbital angular momentum states by Barklem & O'Mara. Data have been computed for all Fe II lines between observed energy levels in the line lists of Kurucz with log gf > -5 for which the theory is applicable. The variable energy debt parameter Ep used in computing the second order perturbation theory potential is chosen to be consistent with the long range dispersion interaction constant C6 computed using the f-values from Kurucz.Comment: Accepted for A&A. 5 pages, 5 figures, 2 electronic tables. Tables will be available via CDS; presently also at http://www.astro.uu.se/~barklem/papers/fe2_data.tar.g

    A unified numerical model of collisional depolarization and broadening rates due to hydrogen atom collisions

    Full text link
    Interpretation of solar polarization spectra accounting for partial or complete frequency redistribution requires data on various collisional processes. Data for depolarization and polarization transfer are needed but often missing, while data for collisional broadening are usually more readily available. Recent work by Sahal-Br\'echot and Bommier concluded that despite underlying similarities in the physics of collisional broadening and depolarization processes, relationships between them are not possible to derive purely analytically. We aim to derive accurate numerical relationships between the collisional broadening rates and the collisional depolarization and polarization transfer rates due to hydrogen atom collisions. Such relationships would enable accurate and efficient estimation of collisional data for solar applications. Using earlier results for broadening and depolarization processes based on general (i.e. not specific to a given atom), semi-classical calculations employing interaction potentials from perturbation theory, genetic programming (GP) has been used to fit the available data and generate analytical functions describing the relationships between them. The predicted relationships from the GP-based model are compared with the original data to estimate the accuracy of the method.Comment: 10 pages, 7 figures, Accepted for publication in Astronomy & Astrophysic

    Non-LTE Balmer line formation in late-type spectra: Effects of atomic processes involving hydrogen atoms

    Get PDF
    (*** abridged ***) Context: The wings of Balmer lines are often used as effective temperature diagnostics for late-type stars under the assumption they form in local thermodynamic equilibrium. Aims: Our goal is to investigate the non-LTE formation of Balmer lines in late-type stellar atmospheres, to establish if the assumption of LTE is justified. Furthermore, we aim to determine which collision processes are important for the problem; in particular, the role of collision processes with hydrogen atoms is investigated. Method: A model hydrogen atom for non-LTE calculations has been constructed accounting for various collision processes using the best available data from the literature. The processes included are inelastic collisions with electrons and hydrogen atoms, mutual neutralisation and Penning ionisation. Non-LTE calculations are performed, and the relative importance of the collision processes is investigated. Results: Our calculations show electron collisions alone are not sufficient to establish LTE for the formation of Balmer line wings. The role of inelastic collisions with neutral hydrogen is unclear. The available data for these processes is of questionable quality, and different prescriptions for the rate coefficents give significantly different results for the Balmer line wings. Conclusions: Improved calculations or experimental data are needed for excitation and, particularly, ionisation of hydrogen atoms in low-lying states by hydrogen atom impact at near threshold energies. Until such data are available, the assumption of LTE for the formation of Balmer line wings in late-type stars is questionable.Comment: Accepted for A&A; 12 pages, 11 figure

    Electron-impact excitation of neutral oxygen

    Get PDF
    Aims: To calculate transition rates from ground and excited states in neutral oxygen atoms due to electron collisions for non-LTE modelling of oxygen in late-type stellar atmospheres, thus enabling reliable interpretation of oxygen lines in stellar spectra. Methods: A 38-state R-matrix calculation in LS-coupling has been performed. Basis orbitals from the literature (Thomas et al.) are adopted, and a large set of configurations are included to obtain good representations of the target wavefunctions. Rate coefficients are calculated by averaging over a Maxwellian velocity distribution. Results: Estimates for the cross sections and rate coefficients are presented for transitions between the seven lowest LS states of neutral oxygen. The cross sections for excitation from the ground state compare well with existing experimental and recent theoretical results.Comment: Accepted for A&A; 9 pages, 2 figures, 6 table

    Carbon and oxygen in metal-poor halo stars

    Full text link
    Carbon and oxygen are key tracers of the Galactic chemical evolution; in particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor halo stars could be a signature of nucleosynthesis by massive Population III stars. We reanalyse carbon, oxygen, and iron abundances in thirty-nine metal-poor turn-off stars. For the first time, we take into account three-dimensional (3D) hydrodynamic effects together with departures from local thermodynamic equilibrium (LTE) when determining both the stellar parameters and the elemental abundances, by deriving effective temperatures from 3D non-LTE Hβ\beta profiles, surface gravities from Gaia parallaxes, iron abundances from 3D LTE Feii equivalent widths, and carbon and oxygen abundances from 3D non-LTE Ci and Oi equivalent widths. We find that [C/Fe] stays flat with [Fe/H], whereas [O/Fe] increases linearly up to 0.750.75 dex with decreasing [Fe/H] down to 3.0-3.0 dex. As such [C/O] monotonically decreases towards decreasing [O/H], in contrast to previous findings, mainly by virtue of less severe non-LTE effects for Oi at low [Fe/H] with our improved calculations.Comment: 5 pages, 2 figures; published in A&A Letter

    Inelastic O+H collisions and the OI 777nm solar centre-to-limb variation

    Full text link
    The OI 777 nm triplet is a key diagnostic of oxygen abundances in the atmospheres of FGK-type stars; however it is sensitive to departures from local thermodynamic equilibrium (LTE). The accuracy of non-LTE line formation calculations has hitherto been limited by errors in the inelastic O+H collisional rate coefficients: several recent studies have used the so-called Drawin recipe, albeit with a correction factor SH\mathrm{S_{H}} that is calibrated to the solar centre-to-limb variation of the triplet. We present a new model oxygen atom that incorporates inelastic O+H collisional rate coefficients using an asymptotic two-electron model based on linear combinations of atomic orbitals, combined with a free electron model, based on the impulse approximation. Using a 3D hydrodynamic stagger model solar atmosphere and 3D non-LTE line formation calculations, we demonstrate that this physically-motivated approach is able to reproduce the solar centre-to-limb variation of the triplet to 0.02 dex, without any calibration of the inelastic collisional rate coefficients or other free parameters. We infer logϵO=8.69±0.03\log\epsilon_{\mathrm{O}}=8.69\pm0.03 from the triplet alone, strengthening the case for a low solar oxygen abundance.Comment: 13 pages, 8 figures; published in Astronomy & Astrophysic

    Effective temperature determinations of late-type stars based on 3D non-LTE Balmer line formation

    Get PDF
    Hydrogen Balmer lines are commonly used as spectroscopic effective temperature diagnostics of late-type stars. However, the absolute accuracy of classical methods that are based on one-dimensional (1D) hydrostatic model atmospheres and local thermodynamic equilibrium (LTE) is still unclear. To investigate this, we carry out 3D non-LTE calculations for the Balmer lines, performed, for the first time, over an extensive grid of 3D hydrodynamic STAGGER model atmospheres. For Hα\alpha, Hβ\beta, and Hγ\gamma, we find significant 1D non-LTE versus 3D non-LTE differences (3D effects): the outer wings tend to be stronger in 3D models, particularly for Hγ\gamma, while the inner wings can be weaker in 3D models, particularly for Hα\alpha. For Hα\alpha, we also find significant 3D LTE versus 3D non-LTE differences (non-LTE effects): in warmer stars (Teff6500T_{\text{eff}}\approx6500K) the inner wings tend to be weaker in non-LTE models, while at lower effective temperatures (Teff4500T_{\text{eff}}\approx4500K) the inner wings can be stronger in non-LTE models; the non-LTE effects are more severe at lower metallicities. We test our 3D non-LTE models against observations of well-studied benchmark stars. For the Sun, we infer concordant effective temperatures from Hα\alpha, Hβ\beta, and Hγ\gamma; however the value is too low by around 50K which could signal residual modelling shortcomings. For other benchmark stars, our 3D non-LTE models generally reproduce the effective temperatures to within 1σ1\sigma uncertainties. For Hα\alpha, the absolute 3D effects and non-LTE effects can separately reach around 100K, in terms of inferred effective temperatures. For metal-poor turn-off stars, 1D LTE models of Hα\alpha can underestimate effective temperatures by around 150K. Our 3D non-LTE model spectra are publicly available, and can be used for more reliable spectroscopic effective temperature determinations.Comment: 19 pages, 10 figures, abstract abridged; accepted for publication in Astronomy & Astrophysic
    corecore